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Abstract

Some industries such as healthcare and financial services have reported significant productivity gains

from introduction of new technologies. However, other more traditional, labor-intensive industries are

lagging behind. We use granular data to examine the impact of a customer-facing technology (a tabletop

device that facilitates the table service process) on the check size and meal duration aspects of restaurant

performance. The restaurant chain in our study implemented tabletop devices in a staggered manner,

offering us a quasi-experimental setting in which to apply a difference-in-difference technique and iden-

tify the causal effect of the technology. We find that the tabletop technology is likely to improve average

sales per check by close to 3% and reduce the meal duration by close to 10%, which increases the sales

per minute or sales productivity by approximately 11%. Various robustness checks of our empirical

strategy and post-hoc analyses find that tabletop technology allows low-ability waiters to improve their

performance more significantly than high-ability waiters. In addition, the technology does not change

the staffing level. Overall, our results indicate great potential for introducing tabletop technology in a

large service industry that currently lacks digitalization.

Keywords: technology innovation; self-service technology; labor productivity; restaurant opera-

tions, service operations
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1 Introduction

Information technology has been found to be associated with higher productivity by reducing costs, increas-

ing output quality, and providing intangible benefits such as convenience, timeliness and product variety

in certain service sectors, including business services, financial services, and healthcare (Brynjolfsson and

Hitt, 2000; Aral et al., 2012; Xue et al., 2011; Miller and Tucker, 2011; Hitt and Tambe, 2016; Bavafa et al.,

2017). Still, many traditional service sectors remain largely undigitized or underinvested in technology

(Gandhi et al., 2016) because of the intensive human aspects of the service process. Examples of non-

digitized consumer activity include shopping at brick-and-mortar retailers, hiring house cleaners, checking

in at a hotel front desk, and having a car serviced at repair shop. Nevertheless, many traditional service

sectors are starting to invest in technology to digitize (or “disrupt”) their business models (Singh, 2015).

The restaurant industry is a case in point, though it seems to be one of the latecomers to technology

innovation. Because of its people-intensive nature, restaurant managers focus on human aspects of services.

Also, because of a low industry profit margin of between 1 and 7%, investing extra budget in technology in-

novation can seem hard to justify (Mogavero and A’agnese, 2016). While some novelties such as reservation

systems (e.g., Opentable), delivery services (e.g., Uber Eats), and rating services (e.g., Yelp) are growing in

popularity, what happens inside the restaurant with table service has remained largely unchanged for many

years.

As one of the nation’s major service sectors, the restaurant industry offers unique opportunities for tech-

nology innovation. In the United States, over one million restaurant locations generate more than $799

billion in annual sales, accounting for 4% of the nation’s GDP. These restaurants hire 14 million workers

(half of all adults have worked in the restaurant industry at some point during their lives) (NRA, 2017). In

addition, restaurants offer an experiential service that can directly trigger customers’ extreme happiness or

displeasure. Two in five consumers report that restaurants are an essential part of their lives. Recognizing

such opportunities, the restaurant industry has just recently begun to increase spending on technology-

related initiatives (Lee et al., 2015). Industry reports estimate that the U.S. restaurant industry spent 5.8%
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of its revenues on technology in 2014, as compared to 3.5% in 2013 (Lorden and Pant, 2015). Restaurants

are adopting technology in several aspects of the business (CBInsights, 2017), including review and search

(e.g., Koshertopia, Foodspotting), reservations (e.g., Nowait, QLess), next-generation ordering/payment

(e.g., Ziosk, E la Carte), loyalty and rewards (e.g., FiveStars, LevelUp), and HR analytics (e.g., ServeAny-

where, When I Work).

Implementing new technology incurs escalating costs to the already thin restaurant profit margin (Lee

et al., 2015). In addition, restaurants (like other hospitality industries) traditionally have not realized the key

advantages through technology that they have in location, decoration, and personnel. Human interaction is

an integral part of restaurant hospitality, especially for full-service restaurants. Naturally, such interaction

between customers and service-providers may be harmed by using self-serve technology (Schultze and Or-

likowski, 2004). Although 20% of customers claim that they would rather use some kind of customer-facing

technology than interact with restaurant staff, 45% feel that technology makes restaurant visits and ordering

more complicated (NRA, 2017). Service-providers must devote extra effort to promote the technology and

instruct customers to use it (Schultze and Orlikowski, 2004). Furthermore, technology that collects customer

data may pose a significant risk of data breaches, damaging business performance (Baertlein, 2017). For

these reasons, it remains unclear whether or not and how new technology may improve restaurant perfor-

mance.

In this paper, we analyze more than 2.6 million transactions of a large, full-service casual restaurant

chain as it implemented a customer-facing tabletop technology, to understand how the technology affects

sales and meal duration aspects of restaurant performance. We study the full-service casual restaurants as

our empirical setting because this sector is characterized by people-intensive table service. This sector of

restaurants charge mid-range prices and collected over $90 billion revenues in 2014, qualifying it as eco-

nomically significant. We focus on tabletop technology (see Section 2.2 for a detailed description of this

technology) because industry executives are reported to prioritize customer-facing technology represented

by the tabletop systems over other restaurant technology in order to enhance business efficiency and cus-
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tomer engagement (Lee et al., 2015). For our analysis, we exploit the staggered timing of the technology

implementation and apply a difference-in-difference technique to identify the causal impact of tabletop sys-

tems on restaurant operations, followed by various robustness checks. In addition, we examine the nuances

of the impacts that are oriented towards waiters and restaurant management, respectively. We find that

tabletop technology is likely to improve average sales per check by close to 3% and reduce meal duration by

approximately 10%, increasing the sales per minute or sales productivity by approximately 11%. New tech-

nology helps reduce the performance gaps between high-ability waiters and low-ability waiters, in that the

tabletop technology better increases sales and reduces meal duration for low-ability waiters than for high-

ability ones. It is not because low-ability waiters, who have a stronger need for the technological assistance,

actually use the technology more frequently than the high-ability waiters. Rather, the technology duplicates

what the high-ability waiters already deliver. The new technology also helps waiters more effectively upsell

and cross-sell. We find no significant changes in staffing levels or store traffic due to the technology.

Our research findings highlight the value of technology innovation for restaurant operations. We also

generate insights for managers to consider changes in staffing decisions and the functions of the new systems

to fully exploit the productivity gains from the new technology.

2 Theoretical Background

2.1 Literature Review

We contribute to the ongoing research stream studying the impact of the information technology on firm/labor

productivity (we refer readers to Tambe and Hitt (2012); Ren and Dewan (2015) for their excellent reviews of

the literature concerned). IT investment is typically found to be associated with higher output, better output

quality, and value for consumers, together with lower costs, thus increasing firm productivity (Brynjolfsson

and Hitt, 1996; Hitt and Brynjolfsson, 1996; Brynjolfsson and Hitt, 2000, 2003). For its mechanism, on the

one hand, research suggests that IT is a net substitute for both ordinary capital and labor input (Dewan and

Min, 1997). On the other hand, research reveals that IT can complement workplace reorganization and new

4



services to increase productivity (Bresnahan et al., 2002; Brynjolfsson and Hitt, 2000). Most of the research

in this stream focused on firm-level (e.g., Brynjolfsson and Hitt (2000)) or country-level (e.g., Dewan and

Kraemer (2000)) data, which provides generalizable evidence of the results. However, due to a general lack

of data availability, little research was conducted using granular transaction data to reveal more information

about how a technology specifically affects individual components in an applied service setting.

Only recently has a growing number of papers started to turn to granular level data to study the impact

of technology on firm and labor productivity, like we do. For example, Aral et al. (2012) analyze detailed

accounting records and email usage data, and find that electronic communication networks provide work-

ers access to heterogeneous knowledge in a midsize executive recruiting firm, which helps them improve

the matching of candidates and companies’ requirements. Unlike Aral et al. (2012)’s paper, which studies

an information-intensive business service company, our study analyzes a people-intensive hospitality firm

where technology may affect firm and labor productivity through different mechanisms. In a closely related

paper, Pierce et al. (2015) find that the implementation of a monitoring system (i.e., back-office technology)

reduces employee theft and improves productivity in a casual restaurant setting. Our paper is differentiated

from this work by two aspects: 1) we study a customer-facing technology that is reportedly attracting in-

creasing interest from restaurant managers (Lee et al., 2015); and 2) the impact of our tabletop technology

is jointly determined by customers’ usage, workers’ performance, and restaurants’ labor decisions. By con-

trast, Pierce et al. (2015)’s paper focuses primarily on the workers’ experience of the effect of the monitoring

system.

Our paper also contributes to a stream of work about the adoption of self-service technology. Many

papers conduct surveys to study what attitudinal, behavioral, and demographic factors are associated with

customers’ decision to use self-service technology (see Campbell and Frei (2010); Susskind and Curry

(2016) for an extensive review of the related literature). Only a handful of papers, including ours, use

observational data to understand how self-service technology actually changes customer demand for ser-

vice. Campbell and Frei (2010) find that use of an online banking channel substitutes the usage of ATMs
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and voice response units, augments service consumption at branch and call centers, and increases total

transaction volume and average cost to serve, consequently reducing short-term customer profitability and

improving long-term retention rates. Besides studies on financial services, healthcare is another active area

examining the self-service technology use. For example, Rajan et al. (2013) theoretically show that adopting

telemedicine will increase access to Parkinson specialists for patients who live longer distance, and therefore

increase the number of patients treated. Similarly, Bavafa et al. (2017) empirically find that the introduction

of an e-visit channel in a large health care system increases office visits by approximately 6%. Further-

more, Jerath et al. (2015) suggest that consumers tend to use the web portal (a self-service channel) of a

health insurance firm to gain structured seasonal information and call the firm to receive health-related in-

formation. Xu et al. (2017) show how information from a new online doctor appointment booking platform,

such as ratings, availability, and reviews, affect consumers’ choice of doctors. These papers tend to focus

on customer behavior changes because of new self-service technology. Our paper additionally examines

worker-oriented and restaurant-oriented effects because the casual dining setting is differently characterized

with high worker/consumer interaction intensity. In addition to empirical work, Gao and Su (2017) formu-

late an economic theory predicting that self-order technology should reduce customers’ waiting time and

increase demand in a quick-service restaurant setting (e.g., McDonald’s). They consequently suggest that

firms should implement self-order technology when consumers have high wait sensitivity. Our empirical

work aims to test this theory prediction, although our empirical setting is a full-service casual restaurant

rather than a quick-service restaurant.

Our paper uses restaurant operations as an empirical setting. Other empirical work on restaurant op-

erations includes table capacity/mix/configuration design (Kimes and Thompson, 2004; Thompson, 2007),

labor staffing and scheduling (Thompson, 2004; Tan and Netessine, 2014b,a, 2015), assigning of customers

to waiters (Tan and Staats, 2017), theft prevention software (Pierce et al., 2015), waiting time cost (Allon

et al., 2011), and food supply chain quality (Yu et al., 2017). Our research adds to this steam of literature by

studying the impact of a novel customer-facing technology on restaurant performance.
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To sum up, our paper makes three contributions to the literature. First, our research uses granular-

level observational data to understand the impact of tabletop technology on firm and labor productivity in

an applied setting. Second, we study a customer-facing technology that is attracting increasing interest in

the restaurant industry, an industry that offers significant opportunity for growth in technology innovation.

Third, we examine worker-oriented, and restaurant-oriented effects of tabletop technology in a people-

intensive service industry with close worker/consumer interaction.

2.2 Tabletop Technology

The tabletop technology that we study allows casual dining customers to view menu items, re-order bev-

erages and alcoholic items, and pay for the meal on the tablet device at the table. It also provides enter-

tainment, such as games and news content. These functions can be adapted to restaurant-specific needs and

requirements. Our focal restaurant chain was one of the first adopters of this technology in the early 2010’s.

It implemented the technology in order to assist its waiters, as opposed to replacing them. The device is

placed on each table in the dining room. After being seated by the host, customers are greeted by a waiter,

who presents the regular paper menu, takes the first drink orders, and introduces the tabletop technology

to customers unfamiliar with it. Then customers choose to interact with the device at their own discretion.

If they click on the “menu” tab, they will see food and beverage items with photos and text descriptions.

The digital descriptions help customers make ordering decisions because they offer more detail than a paper

menu can offer, due to its limited space. After the waiter returns to take orders, customers may ask the

waiter for clarification and recommendations, and place the order of food and beverage with the waiter.

While the device is capable of handling all orders, the restaurant chain requires waiters to take customers’

food and first alcoholic beverage orders because 1) the restaurant regards waiter-customer interaction as a

personalized service process (e.g., waiters are trained to help customers with food restrictions or allergies

and customize the order accordingly); 2) alcoholic beverage orders require age verification. During the

meal, customers may reorder alcoholic drinks directly from the tabletop device. In addition, customers can
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read digital news feeds for free on the tablet and play tablet-based games, such as trivia and chess, for a flat

fee of 99 cents. When the customers are ready to pay, they can either pay with a waiter or pay with a credit

card on the device without the presence of a waiter. After they receive a printed receipt from the tabletop

device or select an option to receive it by email, customers see a green light signal, indicating that they may

leave the restaurant.

2.3 Theoretical Predictions

The aforementioned literature helps us make a theoretical prediction about the impact of tabletop technology

on restaurant performance. First, technology can complement workers by freeing up their capacity and

providing them with more information, so that they can enhance their productivity (Brynjolfsson and Hitt,

2000; Hitt and Tambe, 2016). The tabletop technology in our study assists waiters in introducing menu

items, reordering alcoholic drinks, entertaining customers, and receiving payments. These benefits can

increase waiters’ ability to conduct effective suggestive selling and provide customers with prompt service.

Second, consumers may perceive more control in the service delivery process, as well as a shorter wait

time, thus increasing their demand for service (Campbell and Frei, 2010; Susskind and Curry, 2016). In our

setting, consumers can avoid waiting to get the attention of the waiter to reorder alcoholic drinks or pay for

their meal (more details about the technology can be found in Section 2.2), which should save them time

and make the dining experience more convenient and enjoyable. Consequently, consumers may decide to

spend more money on the meal. Third, the shortened wait time for the consumers who use the self-order

technology can further reduce the wait time of other consumers who do not use the technology, because the

totality of customers contributes to congestion in the same service system (Gao and Su, 2017). For these

reasons, we hypothesize that

HYPOTHESIS 1a: Tabletop technology increases the sales for an average check, everything else being

equal.

HYPOTHESIS 1b: Tabletop technology reduces the meal duration of an average check, everything else
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being equal.

The impact of new technology also depends on another variable – that of the service provider’s (i.e.,

waiter’s) skill level. Tabletop technology should improve the performance for every waiter because it com-

plements waiters’ responsibilities and effectively expands their capacity in terms of both sales ability and

service speed ability (as explained in Hypothesis 1). However, waiters have varying innate skill levels in

these two types of skill dimensions (Tan and Staats, 2017), so some may benefit from technology more than

others. We anticipate that the technology is likely to help either low-sales-ability or low-speed-ability wait-

ers improve their sales and meal duration aspects of performance more significantly than their high-ability

counterparts for two potential reasons.

First, the gained sales or speed performance improvement from technology is more likely to duplicate

what high-sales-ability or high-speed-ability waiters already deliver (Gray and MeGray, 2004). The per-

formance improvement (output) should concavely increase in service quality provided (input), which is

positively associated with a waiter’s ability (e.g., Lu et al. (2017)). In other words, either sales or meal

duration performance improvement may approach an asymptotic limit as the waiter’s sales or speed ability

increases. High-sales-ability or high-speed-ability waiters may already offer the higher sales-generating su-

perior service quality that the tabletop technology aims to complement. For example, similar to the tabletop’s

colorful pictures and well-written textual descriptions, a high-sales-ability waiter may vividly describe the

menu items to develop customers’ appetite. A high-speed-ability waiter may pay close attention to his/her

customers and respond to their reorder needs promptly, thus not only reducing the meal duration but also

generating extra sales (Tan and Netessine, 2015; Tan and Staats, 2017). Similarly, high-sales-ability or high-

speed-ability waiters may already provide more of the kind of prompt service that the tabletop technology is

designed to facilitate. For instance, high-sales-ability waiters can anticipate customers’ refill needs and may

fill customers’ glasses before they order through the tabletop. High-speed-ability waiters may also anticipate

when customers may want to receive the check, streamlining the payment process. In short, tabletop devices

aim to deliver the types of high performance services that high-sales-ability or high-speed-ability waiters
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may already offer.

Second, low-sales-ability or low-speed-ability waiters have a stronger need and may be more inclined to

turn to tabletop technology for help than their high-ability counterparts because they may feel social pres-

sure to reduce their performance disparity with high-ability coworkers (Kandel and Lazear, 1992; Mas and

Moretti, 2009; Roels and Su, 2013; Kuziemko et al., 2014). In other words, low-sales-ability or low-speed-

ability waiters may perceive greater benefits from tabletop technology than high-ability waiters perceive,

which may motivate the low-ability waiters to more proactively use the technology (Gatignon and Robert-

son, 1989; Iacovou et al., 1995; Chwelos et al., 2001). For example, low-speed-ability waiters may more

enthusiastically introduce the device’s function to settle the check at the table to the customers than their

high-speed-ability coworkers may, to quicken the check settlement process. Similarly, low-sales-ability

waiters may actively encourage the customers to read the menu descriptions on the device because they

may not be as knowledgeable about the menu as the high-sales-ability waiters. Encouraging the use of the

tabletop technology should further maximize its performance boost.

For these two reasons, we posit that

HYPOTHESIS 2a: The tabletop technology increases the sales for either low-sales-ability or low-speed-

ability waiters more significantly than for high-sales-ability or high-speed-ability ones, everything else being

equal.

HYPOTHESIS 2b: The tabletop technology increases service speed for either low-sales-ability or low-

speed-ability waiters more significantly than for high-sales-ability or high-speed-ability ones, everything

else being equal.

3 Empirical Strategy

3.1 Data

We collected the data directly from the restaurant chain on conditions of anonymity and non-disclosure.

Our sample includes all 66 restaurants of this chain in a major metropolitan area in the United States. The
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chain installed the tabletop technology in a staggered fashion from March 2013 to March 2014. Table 1

shows the installation months of the tabletop technology for each location in the data. As can be seen, the

majority of the stores (42 stores) installed the tabletop systems in March 2014. The chain provided us with

the data in three time periods: the first period ranges from December 2012 to February 2013, when none of

the restaurants installed the tabletop technology; the second period ranges from December 2013 to February

2014, when 24 restaurants had installed the tabletop systems (as part of the pilot stores, 11 out of these 24

restaurants installed the technology during this period of time); the last period ranges from May 2014 to

July 2014, when all the restaurants had installed the tabletop technology. Ideally, we would have liked to

obtain the continuous observations from December 2012 to July 2014. Due to the company’s sensitivity, we

were only able to collect the three periods of data. Fortunately, the three time periods cover various stages

of the technology adoption (i.e., pre-adoption, adoption, post-adoption)1. In addition, there was a significant

variation in installation dates. The staggered installation dates and our three observation periods offered

the benefit of allowing us to disentangle the effects of adopting the tabletop technology on the restaurant

performance from other confounding factors (more details will be provided in Subsection 3.2).

Table 1: Tabletop Installation Months

Installation Date Number of Restaurants

Involved

3/31/2013 1

4/30/2013 4

9/30/2013 3

11/30/2013 5

12/31/2013 2

1/31/2014 7

2/28/2014 2

3/31/2014 42

Our analysis focuses on the main dining room data because 1) the dining room is typically the largest

1As a robustness check, we focus on one wave of introduction between December 2013 and February 2014 (period II) to create
a direct pre-installation and post-installation comparison between the treatment restaurants and the control restaurants. During this
period, all the restaurants that introduced the tabletop devices in March 2014 (the last wave) were still the control restaurants (42
in total). We also exclude the handful restaurants that implemented the devices before December 2013 from our sample (13 in
total). Finally, we analyze all the observations during period II. The results are shown in the Appendix, which support our main
results both qualitatively and quantitatively. Focusing on one continuous period provides a classic difference-in-difference setting
and corroborates our main results.
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source of restaurant sales and 2) it operates differently from the bar or the to-go orders counter. The to-

go orders counter serves as a placebo test, on which we will elaborate in Subsection 4.2.3. Furthermore,

we eliminate the day’s top 5% and bottom 5% of checks in terms of check sizes to reduce the influence

of outliers (e.g., very large parties and private events). The final data includes slightly over 2.6 million

check-level observations of the sales, items sold, check opening and closing times, the waiter associated

with the check, party size, and tips. As robustness checks, we analyze both the full data set and a data set

that sequentially drops the observations that are four standard deviations away from the sample check size

average and party size average2, and we find consistent results (see Appendix).

Table 2 shows the summary statistics of the check-level data in the three periods. These statistics provide

a preliminary glimpse into the change in restaurant performance due to tabletop technology implementation.

For example, the average sales per check increases from $30.45 during period I to $31.82 during period

III. The average meal duration drops from 55.3 minutes during period I to 49.76 minutes during period

III. These basic performance data are in line with those reported in other restaurant revenue management

studies (Kimes and Thompson, 2004; Kimes and Robson, 2004). Furthermore, the average number of items

sold increases from 5.02 during period I, when only food, beverages, and alcoholic drinks are sold, to 5.3

during period III, when an additional flat-rate game option is sold on the tabletop systems. In addition, both

food and alcoholic drinks sales increase from 3.33 and 0.42, respectively during period I to 3.43 and 0.46,

respectively, during period III. Besides these performance-related variables, the average party size grows

slightly from 1.97 people in period I to 2.05 people in period III. The hourly number of waiters staffed

seems to remain constant over time, with the average being 4.76 during period I, 4.37 during period II and

4.45 during period III.

Preliminary as these results are, they offer model-free evidence of the effects that we seek to demonstrate

using a more rigorous identification strategy to delineate the effect of tabletop technology on restaurant

performance.

2We thank an anonymous reviewer for this advice.
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Table 2: Summary Statistics of Check-level Observations

Period 1

(12/2012 -

2/2013)

Period II

(12/2013 -

2/2014)

Period III

(5/2014 -

7/2014)

Definition Mean SD Mean SD Mean SD

Sales Sales per check in dollars 30.45 15.46 31.59 16.13 31.82 16.06

MealDuration Length of a meal in

minutes

55.30 20.80 54.04 20.22 49.76 18.91

ItemQuantity Number of items sold 5.02 2.65 5.08 2.69 5.30 2.84

FoodQuantity Number of food items sold 3.33 1.77 3.35 1.77 3.43 1.85

BeverageQuantity Number of beverage items

sold

1.29 1.14 1.27 1.13 1.26 1.13

AlcoholQuantity Number of alcoholic drink

items sold

0.42 1.36 0.44 1.39 0.46 1.39

PartySize Number of customers in a

party

1.97 1.03 2.00 1.03 2.05 1.07

HrWaiters Hourly number of waiters 4.76 2.36 4.37 2.19 4.45 2.21

HrTables Hourly number of checks

opened

12.66 8.06 12.10 7.72 11.59 6.98

Observations 896,825 851,081 862,624

Finally, before we delve into our empirical strategy, we examine the correlation matrix of the check-

level variables as sanity checks (see Table 3). As expected, Sales is positively correlated with MealDura-

tion (0.2529), the variables representing the number of items sold (i.e., ItemQuantity (0.9088), FoodQuan-

tity (0.8238), BeverageQuantity (0.4625), AlcoholQuantity (0.3537)), and PartySize (0.7434). MealDura-

tion is also positively correlated with those variables related to the number of items sold (0.2207, 0.2044,

0.0296, 0.1698, respectively) and PartySize (0.1420). Among the breakdown of the types of the items sold,

FoodQuantity positively correlates with BeverageQuantity (0.4128) and AlcoholQuantity (0.0988), imply-

ing that beverages and alcoholic drinks are generally complements to food items. However, beverages and

alcoholic drinks tend to be substitutes to each other because the correlation between BeverageQuantity and

AlcoholQuantity is negative (-0.1854). All of these correlations match our expectations, which suggests that

the data passes the sanity check. We proceed with our identification strategy in the next section.
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Table 3: Check-level Correlation Matrix

Sales MealDuration ItemQuantity FoodQuantity BeverageQuantity AlcoholQuantity

Sales 1.0000

MealDuration 0.2529* 1.0000

ItemQuantity 0.9088* 0.2207* 1.0000

FoodQuantity 0.8238* 0.2044* 0.8946* 1.0000

BeverageQuantity 0.4625* 0.0296* 0.6152* 0.4128* 1.0000

AlcoholQuantity 0.3537* 0.1698* 0.2663* 0.0988* -0.1854* 1.0000

PartySize 0.7434* 0.1420* 0.6520* 0.6564* 0.4169* 0.0590*

*: Significant at the 0.05 level

3.2 Identification Strategy

In order to study the effect of tabletop technology on restaurant performance, we employ a difference-in-

difference (DID) estimation strategy. We consider the tabletop system implementation as a “treatment” on a

restaurant, while using the pre-implementation restaurants as the control group. The DID strategy estimates

the change in the performance difference between the treated restaurants and the control after the treatment,

which in effect distinguishes the true effect of the system implementation from the factors that may affect

the performance of both treated and control restaurants (e.g., menu item change, economy factors) over

time. In other words, the control restaurants are used as counterfactuals for how performance would have

changed in those treated restaurants if they had not installed the systems. DID is a valuable econometric

technique for evaluation of the impact of policy in social sciences (e.g., Card and Krueger, 2000), and has

been successfully used to study Operations Management related issues (Pierce et al., 2015; Lu and Lu, 2016;

Staats et al., 2016).

To pursue our DID strategy, we employ the following models to estimate the effect of tabletop technol-

ogy on performance in terms of sales and meal duration at the check level, respectively:

log(Salesi) = α0 +α1Systemi +α2 log(MealDurationi)+α3PartySizei +α4Controlsi + εi (1)

log(MealDurationi) = β0 +β1Systemi +β2 log(Salesi)+β3PartySizei +β4Controlsi +ξi (2)

log(Salesi/MealDurationi) = γ0 + γ1Systemsi + γ2PartySizei + γ3Controlsi +θi (3)
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In these models, we log-transform the dependent variables, which is a commonly used technique (Albright

and Winston, 2014), to make the residuals more symmetrically distributed to form a bell shape for inference

purposes. We focus on sales, meal duration, and sales per minute per check as our main performance mea-

sures because 1) sales is an integral performance measure in the casual dining industry, where profit margins

are only 1% to 7%; 2) meal duration is related to service speed; 3) sales per minute reflects sales produc-

tivity, and 4) micro-level data typically reveal more information than aggregate-level data. We consider a

break-down of the number of items sold in terms of food, beverages, and alcoholic drink items in Section 4.3

as additional analysis to show the insights about the tabletop technology impact. We also consider hourly

total sales as an alternative performance measure and a robustness check in Subsection 4.2.4.

On the right-hand side of the models, System is a binary variable, which is equal to one when check i

happened after the restaurant implemented the tabletop system, and zero otherwise. Its coefficient assesses

the impact of the system on the restaurant performance. The tabletop technology potentially affects both

sales and meal duration, which are typically positively associated with each other. In other words, the

technology can directly affect sales (meal duration) and indirectly affect sales (meal duration) via meal

duration (sales). In order to delineate the pathway of the impact of the technology, we control for the

meal duration in the sales model (Model 1), and vice versa (Model 2), capturing the direct effects of the

technology on sales and meal duration. We also estimate two models excluding sales and meal duration

controls to estimate the total effects of the technology. For these two total effects models, we adopt a

seemingly unrelated regression approach to adjust for the correlation between sales and meal duration.

In all the models, we further control for PartySize and a group of other Controls variables that include

the fixed effects of the working shift (lunch or dinner), the day of the week, the weeks, and the stores. These

additional categorical variables in the Controls adjust for the drivers of the restaurant performance variation,

such as intra-day demand, trend, seasonality, and neighborhood-specific factors, which are all unrelated

to the implementation of the tabletop technology, and they have been used extensively in the literature

that references restaurant data. We then cluster the standard errors at both store and day level to allow

15



for correlation within store and heteroskedastic errors over time. The clustered robust errors can correct

for overconfidence of the estimates because check-level sales and meal duration are likely to be correlated

within the store and the day.

4 Results

4.1 Treatment Effects

Table 4 shows the treatment effects of tabletop technology on the restaurant performance. The coefficient

of System in the sales model is significant and equal to 0.0102 in Column 1, suggesting that the total effect

of the tabletop technology on sales per check is approximately 1% ($0.3 out of the average check size

of $30.45 during period I). Its 95% confidence interval ranges from 0.8% to 1.2%. The coefficient of

System in Column 3 is significant and equal to 0.0288, which suggests the direct effect conditioned on the

meal duration is estimated to be approximately 2.9% (or $0.88). It has a 95% confidence interval between

2.4% and 3.3%. The indirect effect is approximately equal to −0.0994× 0.1917 ≈ −1.9%, which is the

multiplication between the coefficient of System in Column 4 and the coefficient of log(MealDuration)

in Column 3. Its 95% confidence interval ranges from -2.1% to -1.7%. The indirect effect is negative

because the technology reduces the meal duration, which is positively associated with sales. No sales can

be generated when the meal is concluded. Either the 1% total effect or the 2.9% direct effect on sales is

practically significant, given the low-margin nature of the casual dining industry.

In addition, Column 2 shows that the coefficient of System is statistically significant and equals -0.0974,

suggesting that the tabletop system may reduce the meal duration by 9.74% (or approximately 5.38 minutes

of the average pre-installation meal duration of 55.3 minutes). Its 95% confidence interval ranges from

-9.94% to -9.54%. It primarily consists of a direct effect conditioned on sales, -9.94% (95% confidence

interval is from -11.1% to -8.8%), shown in the System coefficient in Column 4 and a minimal indirect effect

via sales. The indirect effect is estimated to be 0.0288 (the coefficient of System in Column 3) ×0.1859

(the coefficient of log(Sales) in Column 4) ≈ 0.5%. Its 95% confidence interval falls between 0.5% and
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0.6%. The indirect effect is positive because a larger check typically takes longer. Note that the meal

duration reduction can primarily be associated with more efficient service, as opposed to a lower number of

ordered items, because we control for the sales in Column 4. With increased sales and shorter meal duration

per check, Column 5 shows that tabletop technology is estimated to increase sales productivity by 10.77%

($0.06/minute out of the average sales productivity of $0.55/minute during period I).

Furthermore, the coefficients of the control variables demonstrate associations in expected directions.

For example, the coefficient of log(MealDuration) is 0.1917 in the sales model, while the coefficient of

log(Sales) is equal to 0.1859 in the meal duration model, implying that sales and meal duration are positively

associated with each other. Finally, PartySize is positively associated with larger check size (0.3286 and

0.318), matching expectation. PartySize is positively associated with meal duration in Column 2 (0.0553),

but it becomes negative in Column 4 (-0.0058) with the sales control. The sign flips because Column 4

measures how long it takes to finish a meal, normalized by its dollar value. In other words, the more people

in the party, the faster the party is typically going to finish a fixed size meal.

Table 4: Check-level Impact of Tabletop Technology on Restaurant Performance

(1) log(Sales) (2)

log(MealDuration)

(3) log(Sales) (4)

log(MealDuration)

(5) log(Sales/MealDuration)

System 0.0102*** -0.0974*** 0.0288*** -0.0994*** 0.1077***

(0.0010) (0.0010) (0.0023) (0.0058) (0.0060)

PartySize 0.3286*** 0.0553*** 0.3180*** -0.0058*** 0.2735***

(0.0002) (0.0002) (0.0020) (0.0009) (0.0021)

log(Sales) 0.1859***

(0.0026)

log(MealDuration) 0.1917***

(0.0034)

Controls Yes Yes Yes Yes Yes

H1 Supported Yes Yes Yes Yes Yes

Observations 2,609,692 2,609,692 2,609,692 2,609,692

Adjusted R-squared 0.531 (jointly estimated by SUR) 0.546 0.124 0.331

1. Standard errors are shown in parentheses. In particular, clustered standard errors at store and day level are provided in Columns 3 through 5.

2. *p≤ .05, **p≤ .01, ***p≤ .001.
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4.2 Robustness Checks of Internal Validity

4.2.1 Parallel Trends Assumption

The validity of the DID technique relies on a critical assumption, that of parallel trends, which states that

the treated and the control restaurants should have followed similar performance trends without the system

implementation. We validate this assumption by 1) providing institutional knowledge of the restaurants, 2)

conducting visual checks of the graphical trends of sales and meal duration, and 3) performing statistical

tests of implementation timing decisions.

Our institutional knowledge of the restaurants suggests limited heterogeneity and supports the parallel

trends assumption for the following three reasons:

First, all of the restaurants in our sample belong to an established chain that operates with a uniform

management style.

Second, the restaurants are all located in the same metropolitan area, thus making geolocational and

macroeconomic trends comparable across the locations.

Third, the restaurants represent the entire population of this chain in the metropolitan area, which alle-

viates the potential selection bias of observing only a subset of restaurants that implemented the system.

In addition to institutional knowledge, we illustrate the parallel trends before and after the implementa-

tion with two graphs of weekly average sales and weekly average meal duration, respectively, for the treated

restaurants and the control group. Our data captures 11 restaurants that implemented the technology during

period II, which includes two in December 2013, seven in January 2014, and two in February 2014. For

illustration purposes, we focus on the seven restaurants (defined as the treatment group) that installed the

tabletop systems during the same week in January (108th week in our sample), and 44 restaurants did not yet

have the systems installed (defined as the control group). We exclude the 15 restaurants that implemented

the systems before January, 2014.

Figures 1a and 1b show the weekly average sales and meal duration per check of both the treated and

the control groups before and after the 108th week when seven restaurants installed the tabletop technology
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(represented by a vertical line). The treated and the control restaurants seem to have similar linearly-fitted

trends before the installation week. Note that, although the control group persistently shows a longer meal

duration than the treatment group (i.e., higher level), their different meal duration levels will be removed by

the DID estimation. Equally important, we estimate weekly pre-installation growth rates of sales and meal

duration, respectively. The results are presented in Table 5. While the WeekTrend (i.e., a linear continu-

ous variable of weeks with an increment of one unit for each consecutive week) is significant in the sales

model for the control restaurants, the differences of the WeekTrend coefficients turn out to be statistically

insignificant (p-values are 0.6959 and 0.6914) in both sales and meal duration models. In sum, both the

visual checks and the indifferentiable growth rates suggest that the parallel trends assumption should be

valid before the technology installation for this sample. We further repeat the visual checks and estimation

of the pre-installation growth rates for another two installation months during period II (i.e., two restaurants

in December, 2013, and two in February, 2014). The results are provided in the Appendix, and they robustly

support the parallel trends assumption.

Figure 1: Visual Checks of Parallel Trends

(a) Weekly Average Sales per Check before and after the
Week of January 27th, 2014

(b) Weekly Average Meal Duration per Check before and
after the Week of January 27th, 2014

In order to address potential endogenous selection bias of restaurants to implement the technology be-

fore the mass roll-out, we first estimate a logit model and a probit model to examine what type of restaurants

were selected to implement the technology during January, 2014. We then match all the treated restaurants
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Table 5: Pre-installation Weekly Growth Rates during Periods I and II

log(Sales)

Treated

log(Sales)

Control

log(MealDuration)

Treated

log(MealDuration)

Control

WeekTrend 0.0004 0.0006* -0.0000 0.0001

(0.0003) (0.0002) (0.0001) (0.0001)

PartySize 0.3281*** 0.3294*** 0.0557*** 0.0532***

(0.0018) (0.0014) (0.0009) (0.0005)

Controls Yes Yes Yes Yes

Observations 148,187 916,314 148,187 916,314

Adjusted R-squared 0.509 0.517 0.066 0.083

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

with those that had not implemented the technology, and we repeat analysis on this smaller but more homo-

geneous matched sample.3 In the logit/probit models, we specifically include four predictors: PreAvgSales,

PreAvgMealDuration, PreAvgTables, and PreAvgStaffing, which measure the average check size, the aver-

age meal duration, the average hourly number of tables/parties seated and the average hourly number of

waiters staffed before the system implementation, respectively. We a priori postulate that restaurants may

consider these factors when choosing where to implement the tabletop system first because the system is

related to improving sales and efficiency performance.

Columns 1 and 2 in Table 6 show the results. As can be seen, all the coefficients are statistically

insignificant except PreAvgMealDuration in the probit model, with a negative coefficient (-0.1684). These

results suggest that the treatment restaurants are generally comparable with the control restaurants, which

supports the exogenous installation timing assumption. Nevertheless, those restaurants that tended to have

shorter meal duration may have been more likely to implement the technology in January 2014 than those

that had longer meal duration, which is consistent with our visual check in Figure 1b.

Although we cannot completely rule out the endogeneity (e.g., the chain chose restaurants with shorter

meal duration to install the technology in January 2014), we do not believe this possibility significantly

drives our results for the following reasons. First, despite shorter meal duration, the treated restaurants

have similar trends with the control restaurants. Thus, the DID methodology can still identify the treatment

effect because the difference in the pre-treatment levels will be differenced out by the difference in the

3We thank the AE for this valuable suggestion.
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post-treatment levels.

Second, the result suggesting that the chain targeted those restaurants having shorter meal duration to

implement the technology in January 2014, actually makes our estimated effect of technology on meal

duration conservative. A restaurant having short meal duration may have already been efficient enough,

making it difficult and costly for the tabletop technology to reduce meal duration further (i.e., the floor

effect). Admittedly, one could argue that customers going to the early-adopting restaurants may be more

time-sensitive than those going to the late-adopting ones, which would provide an alternative explanation to

the technological effects. We find the customers in the early adopting restaurants do not necessarily use the

tabletop technology more frequently than those in the late-adopting ones. Only 55% of the checks were paid

with the tabletop systems in the early-adopting restaurants, while 62% of the checks that were paid with

the tabletop systems in the late-adopting restaurants. In addition, the early adopting restaurant customers do

not necessarily order more items per unit of time than the late adopting restaurant customers. The average

numbers of items ordered normalized by meal duration are 0.0966 items/minute, and 0.1041 items/minute

in the early- and late-adopting restaurants, respectively. In sum, these two pieces of evidence suggest that

the restaurants do not necessarily target those early adopting restaurants because their customers are more

time-sensitive.

Third, we apply matching on the data to reduce heterogeneity and we find consistent results. In particu-

lar, we use PreAvgSales, PreAvgMealDuration, PreAvgTables and PreAvgStaffing to compute the propensity

scores of implementing the technology. We then match each treatment restaurant with comparable control

restaurants, using an optimal full matching method (Hansen, 2004). This method minimizes a weighted

average of the estimated propensity scores between each treated restaurant and each control restaurant in a

subclass. After matching, we check the balance improvement to confirm the matching reduces heterogeneity

in the matched subclasses. We then focus on period I and period II and re-estimate our main effect models.

Table 17 in the Appendix shows the results, which are congruent with the results reported in Table 4 without

matching. We also provide more detailed explanation of our matching procedures in the Appendix.
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Table 6: Logit and Probit Models of Receiving Treatment

(1) January 2014 =1

Estimated by Logit

Model

(2) January 2014 =1

Estimated by Probit

Model

Unmatched sample

PreAvgSales 0.1987 0.1080

(0.4416) (0.2450)

PreAvgMealDuration -0.2903 -0.1684*

(0.1499) (0.0830)

PreAvgTables 0.3388 0.1813

(0.6775) (0.3582)

PreAvgStaffing -1.6763 -0.9415

(2.2002) (1.1760)

Observations 51 51

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

Ideally, we would like to conduct the visual checks of parallel trends for all the installation dates. How-

ever, due to the limitations of our data, we only observe the immediate pre-treatment data for these three

months. To alleviate the generalizability concern, we additionally conduct robustness checks of controlling

for restaurant-specific trends. In other words, we introduce the interaction between the week categorical

variables and the store fixed effects in Models 1 and 2. Table 7 shows the results, which are both qualita-

tively and quantitatively consistent with the main results in Table 4.

Table 7: Controlling for Restaurant-Specific Week Fixed Effects

log(Sales) log(MealDuration)

System 0.0341*** -0.1269***

(0.0073) (0.0072)

log(Sales) 0.1861***

(0.0006)

log(MealDuration) 0.1932***

(0.0006)

PartySize 0.3179*** -0.0059***

(0.0002) (0.0003)

Controls† Yes Yes

Observations 2,609,692 2,609,692

Adjusted R-squared 0.547 0.131

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01,

***p≤ .001.

†: weekly FEs×stores instead of weekly FEs and stores alone.
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We finally regress the installation dates (a continuous variable of daily trends with a larger number

indicating a later date) on the installation average sales, meal duration per check (i.e., PreAvgSales, and

PreAvgMealDuration), average hourly traffic in terms of the number of parties/tables (PreAvgTables) and

average hourly staffing levels (PreAvgStaffing) in order to determine whether or not there is a systematic

bias towards the installation dates in the entire sample. Table 8 shows the results of the regression of instal-

lation dates on the pre-installation performance. All the coefficients turn out to be statistically insignificant,

suggesting that these factors are all uncorrelated with the implementation date.

Table 8: Pre-installation performance and Implementation Dates

Installation Date

PreAvgSales 11.7044

(10.8915)

PreAvgMealDuration -2.9587

(3.5044)

PreAvgTables -0.1590

(0.1889)

PreAvgStaffing 13.9033

(48.9049)

Observations 66

Adjusted R-squared 0.065

1. Standard errors are shown in parentheses.

2. *p≤ .05, **p≤ .01, ***p≤ .001.

4.2.2 Persistent Effects

A potential confounding factor of the true effect of technology implementation on organizational perfor-

mance is the Hawthorne effect, which causes a temporary change in performance because of workers’

awareness of being observed (Landsberger, 1957). When the tabletop technology was implemented, workers

could have altered their behavior due to the attention of the management. In order to tease out the potential

Hawthorne effect, we estimate individual treatment effects in each of the first eight weeks after the system

was implemented to show the persistent effect of the tabletop technology. In other words, we replace System

with eight dummy variables, indicating each of the first eight weeks after the system implementation, while

keeping the control variables the same as in Models 1 and 2.
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The results are illustrated in Figure 2.The circles are the point estimates of the week, while the lines go-

ing through the dots indicate their 95% confidence intervals. We observe that both sales and meal duration

effects are likely to be persistent because the coefficients are statistically significant and direction is consis-

tent with the main results. The increasing coefficient sizes alleviate the concern of a potential Hawthorne

effect, which would have otherwise implied decreasing coefficients. In addition, the strengthening of the

technology effects may imply that it takes time for organizations to learn how to properly maximize the

value of new technology.

Figure 2: Persistent Effects

(a) Eight Weeks Post-Installation Point Estimates of Sales Effects
and Their 95% Confidence Intervals

(b) Eight Weeks Post-Installation Point Estimates of Meal Duration
Effects and Their 95% Confidence Intervals

4.2.3 Placebo Tests

In order to alleviate the concern of finding false-positive results in our study (Bertrand et al., 2002), we

conduct two types of placebo tests. In the first, we follow the approach suggested in Pierce et al. (2015)

and randomly assign the actual implementation dates of the tabletop technology to the 66 restaurants, re-

fitting our Models 1 and 2 60 times. In the second, we collect the POS data from the to-go orders of these

restaurants. The to-go orders did not utilize the tabletop technology, so we expect the coefficient of System

to be insignificant.

Figures 3a and 3b show the results of the first type of placebo tests of sales and meal duration, re-
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spectively. Each point is the estimate of the coefficient of System, while the capped spikes are their 95%

confidence intervals. The 60 placebo point estimates are then ranked together with the actual estimate (the

rightmost estimate). In the sales model (Figure 3a), the placebo point estimates are capped between ±0.01,

while the actual estimate is close to 0.03 (more than three times as big as the largest placebo estimate). In

addition, in the meal duration model (Figure 3b), the placebo point estimates are capped between ±0.025,

whereas the actual estimate is close to -0.1 (more than four times lower than the smallest placebo estimate).

These wide differences between the placebo estimates and the actual ones alleviate the concern of spuri-

ous estimation because of the structure of our data sample. Furthermore, the coefficient of System in the

to-go sample data (i.e., our second placebo test) is statistically insignificant, which further supports that

our original estimates capture the main effects of the tabletop technology (the results are presented in the

Appendix).

Figure 3: Placebo Tests

(a) Placebo Tests of the Effects of Tabletop Installation on Sales (b) Placebo Tests of the Effects of Tabletop Installation on Sales

4.2.4 Hour-level Analysis

In addition to the check-level analysis, we conduct analysis at the hourly level. This aggregate level analysis

not only provides a robustness check for the check-level analysis, but also shows the impact of tabletop

technology on the total sales when we control for the total traffic (additional analysis on the effect of traffic
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will be provided in Section 4.4.2). Specifically, we employ the following hour-level models:

log(HrAvgSalesrh) = α0 +α1Systemrh +α2 log(HrAvgMealDurationrh)+α3HrAvgPartySizerh+ (4)

α4 log(HrTablesrh)+α5Controlsrh + εrh

log(HrAvgMealDurationrh) = β0 +β1Systemrh +β2 log(HrAvgSalesrh)+β3HrAvgPartySizerh+ (5)

β4 log(HrTablesrh)+β5Controlsrh +ωrh

log(HrTotalSalesrh) = γ0 + γ0Systemrh + γ1Controlsrh +θrh

where HrAvgSalesrh, HrAvgMealDurationrh and HrTotalSalesrh represent the hourly average sales per check,

meal duration per check and total sales during hour h at restaurant r. In addition, HrAvgPartySizerh and

HrTablesrh are, respectively, the hourly average party size per check and the number of tables that opened

the check during hour h at restaurant r (a measure of restaurant traffic). Controls include the same set of

temporal and locational categorical control variables as in Model 1, which are the fixed effects of shifts, the

day of the week, the weeks, and the stores.

Table 9 shows the results of the hour-level analysis. As with the check-level results, the coefficient of

System for sales is significant and positive (0.0284), while its coefficient for meal duration is significant and

negative (-0.0904). In addition, the magnitudes of these two coefficients are in the range of the check-level

results, which suggests that tabletop technology is likely to improve average sales by close to 3% and reduce

meal duration by close to 10%, controlling for restaurant traffic and other factors. When the traffic is adjusted

for, the impact on the average sales per check can also be interpreted as the impact on total sales. In fact,

the coefficient of System in the HrTotalSales model is significant and equal to 0.0404, which is comparable

with the estimate in the HrAvgSales model. Finally, we repeat our analysis at the daily and weekly levels

and find qualitatively and quantitatively consistent results (the results are provided in the Appendix).
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Table 9: Hour-level Analysis of the Impact of Tabletop Technology on Restaurant Performance

log(HrAvgSales) log(HrAvgMealDuration) log(HrTotalSales)

System 0.0284*** -0.0904*** 0.0404***

(0.0039) (0.0064) (0.0076)

log(HrAvgSales) 0.1985***

(0.0027)

log(HrAvgMealDuration) 0.2634***

(0.0048)

HrAvgPartySize 0.3499*** -0.0090***

(0.0021) (0.0019)

log(HrTables) 0.0147*** 0.0478***

(0.0022) (0.0019)

Controls Yes Yes Yes

Observations 215,527 215,527 215,527

Adjusted R-squared 0.332 0.131 0.077

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

4.3 Waiter-Oriented Impacts

In order to test our H2, we first estimate the following fixed-effects models to estimate waiters’ sales and

speed abilities, respectively (similar models are used in Mas and Moretti (2009); Tan and Netessine (2015)):

log(HrAvgSales jt) = α0 +α1 log(HrMealDuration jt)+α2AvgPartySize jt +α3Controls jt +SalesSkill j + ε jt

log(HrMealDuration jt) = β0 +β1 log(HrAvgSales jt)+β2AvgPartySize jt +β3Controls jt +SpeedSkill j +ξ jt .

In these models, HrAvgSales jt and HrMealDuration jt are the hourly average sales and meal duration per

check for waiter j during hour t, while AvgPartySize jt is the average party size of waiter j during the same

hour t. The control variables Controls jt are the same as in Models 1 and 2. We estimate nine pairs of fixed

effects for SalesSkill j and SpeedSkill j for each of the nine months in our study period to adjust for possible

learning and forgetting effects on skills (Argote and Epple, 1990; Lapré et al., 2000; Shafer et al., 2001). For

interpretation purpose, we then negate SpeedSkill, so that a higher value of SpeedSkill indicates a prompter

waiter. A higher value of SalesSkill implies a waiter who can generate more sales.
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After that, we adapt our main models to examine the moderating effects of waiters’ skill levels:

log(Salesi) = α0 +α1Systemi(1+α2SalesSkillLeveli)+α3Systemi(1+α4SpeedSkillLeveli)+

α5 log(MealDurationi)+α6PartySizei +α7Controlsi + εi

log(MealDurationi) = β0 +β1Systemi(1+β2SalesSkillLeveli)+β3Systemi(1+β4SpeedSkillLeveli)+

β5 log(Salesi)+β6PartySizei +β7Controlsi +ξi.

In these models, we define SalesSkillLeveli and SpeedSkillLeveli as the sales and speed skill levels of the

waiter, associated with check i. We separately use two binary definitions and one continuous operational-

ization of the two variables to ensure the robustness of our variable definitions. In particular, we define

SalesSkillLevel and SpeedSkillLevel as binary variables with either a median or a mean cutoff. They are

equal to one if the waiter is above the median (or the mean) of SalesSkill and SpeedSkill, respectively, and

zero otherwise. We alternatively use the continuous SalesSkill and SpeedSkill to define SalesSkillLevel and

SpeedSkillLevel. In short, under all the definitions, a larger value of either SalesSkillLevel or SpeedSkillLevel

indicates higher ability.

Table 10 shows the results of the moderating effects by waiters’ skill levels. Among the findings, in the

sales models (Columns 1, 3, 5), the coefficients of System are significant and positive, while their interaction

terms with both SalesSkillLevel and SpeedSkillLevel are negative. These results suggest that the tabletop

technology is likely to improve sales performance for either low-sales-ability or low-speed-ability waiters

even more than for their high-ability counterparts. In addition, in the meal duration models (Columns 2, 4,

6), the coefficients of System are significantly negative, while their interaction terms with both SalesSkil-

lLevel and SpeedSkillLevel are positive. The results imply that tabletop technology may improve the service

time for either low-sales-ability or low-speed-ability waiters more than for the high-ability waiters. These

findings support both H2a and H2b.

Table 11 presents the interpretation of the moderating effects of the binary skill types in terms of the me-

dian cutoff. Tabletop technology may improve the sales performance for low-sales-ability, low-speed-ability
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waiters by 3.63%, a value that is 0.69% higher than for high-sales-ability, low-speed-ability waiters (2.94%),

1.13% higher than for low-sales-ability, high-speed-ability waiters (2.5%), and 1.82% higher than for high-

sales-ability, high-speed-ability waiters (1.81%). Similarly, tabletop technology may reduce the meal du-

ration for low-sales-ability, low-speed-ability waiters by 14.26%, a value that is 2.43% higher than for

high-sales-ability, low-speed-ability waiters (11.83%), 7.09% higher than for low-sales-ability, high-speed-

ability waiters (7.17%), and 9.42% higher than for high-sales-ability, high-speed-ability waiters (4.84%).

All of these differences are statistically significant. In addition, the interpretations of the moderating effects

in terms of the mean cutoff and the continuous case are consistent with the median cutoff case, which we

omit to report in the paper for brevity.

Furthermore, we find that 57% of the checks opened by the low-sales-ability waiters (58% by the high-

sales-ability ones) after the technology installation were paid with the tabletop technology . In addition,

54.58% of the checks handled by the low-speed-ability waiters (60% by the high-speed-ability ones) after

the technology installation were paid with the tabletop technology. Both of these differences are statistically

significant. In other words, if we use the payment method as a proxy for the technology use, we observe a

slightly heavier technology use in the high-ability-waiters’ checks than in the low-ability waiters’ checks.

The finding suggests a stronger need does not necessarily translate into action. Hence, we fail to find strong

evidence for one of our hypothesized mechanisms.

In sum, the results of the moderating effects model seem to suggest that the new technology serves as

a “great equalizer” – it does not necessarily make restaurant’s best workers even better; rather, it reduces

performance gaps among workers. The reason is likely to be that the performance improvement from tech-

nology duplicates what the high-ability workers already deliver.

29



Table 10: Moderating Effects by Waiters’ Skill Types

Binary SalesSkillLevel,

SpeedSkillLevel (Median Cutoff, 1:

High-Ability; 0: Low-Ability)

Binary SalesSkillLevel,

SpeedSkillLevel (Mean Cutoff, 1:

High-Ability; 0: Low-Ability)

Continuous SalesSkillLevel,

SpeedSkillLevel

(1)

log(Sales)

(2)

log(MealDuration)

(3)

log(Sales)

(4)

log(MealDuration)

(5)

log(Sales)

(6)

log(MealDuration)

System 0.0363*** -0.1426*** 0.0205*** -0.1057*** 0.0033** -0.0187***

(0.0076) (0.0135) (0.0043) (0.0090) (0.0010) (0.0010)

SalesSkillLevel 0.0539*** -0.0316*** 0.0795*** -0.0377*** 0.0278*** -0.0013***

(0.0014) (0.0025) (0.0032) (0.0034) (0.0002) (0.0002)

System ×SalesSkillLevel -0.0069*** 0.0243*** -0.0109*** 0.0232*** -0.0015*** 0.0022***

(0.0019) (0.0028) (0.0025) (0.0032) (0.0003) (0.0003)

SpeedSkillLevel 0.0225*** -0.1628*** 0.0243*** -0.1945*** 0.0012*** -0.0181***

(0.0014) (0.0035) (0.0021) (0.0041) (0.0001) (0.0001)

System×SpeedSkillLevel -0.0113*** 0.0709*** -0.0075*** 0.0713*** -0.0004*** 0.0002*

(0.0021) (0.0036) (0.0021) (0.0042) (0.0001) (0.0001)

PartySize 0.3178*** -0.0075*** 0.3172*** -0.0075*** 0.3158*** -0.0065***

(0.0021) (0.0012) (0.0020) (0.0010) (0.0002) (0.0003)

log(MealDuration) 0.1990*** 0.2040*** 0.2110***

(0.0039) (0.0037) (0.0006)

log(Sales) 0.1882*** 0.1905*** 0.1908***

(0.0032) (0.0027) (0.0006)

Controls Yes Yes Yes Yes Yes Yes

Observations 2,609,692 2,609,692 2,609,692 2,609,692 2,609,692 2,609,692

Adjusted R-squared 0.545 0.144 0.548 0.161 0.552 0.194

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

Table 11: Interpreting the Moderating Effects of Skill Types†

Sales Impact Speed Impact

High-Sales Ability Low-Sales Ability High-Sales Ability Low-Sales Ability

High-Speed Ability 1.81% 2.5% 4.84% 7.17%

Low-Speed Ability 2.94% 3.63% 11.83% 14.26%

† Defined in terms of Median Cutoff

4.4 Post-hoc Analysis

4.4.1 Sales Action Impact

Regardless of the ability level, waiters can increase their sales performance either through upselling or cross-

selling (Tan and Netessine, 2014b,a). Understanding the break-down of the sales items can further help a

company update its tabletop systems and train waiters to sell the higher-profit-margin items more effectively.

To quantify the effect of the tabletop technology on upselling and cross-selling, respectively, we estimate
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the following models:

ItemQuantityic = α0 +α1Systemi +α2 log(MealDurationi)+α3PartySizei +α5Controlsi + εi ∀c (6)

log(Salesic) = β0 +β1Systemi +β2 log(MealDurationi)+β3PartySizei +β4ItemQuantityic (7)

+β5Controlsi +ξi c = FBA,

where ItemQuantityic is the number of items sold in category c in check i. We create five categories, which

include 1) food (F), 2) non-alcoholic beverages (B), 3) alcoholic drinks (A), 4) the sum of the first three

categories (i.e., FBA), and 5) the sum of all items (including a tabletop flat-rate game option). Model 6 is

estimated with the five categories separately in five equations to delineate the category-level break-down of

the cross-selling effects (i.e., selling more items). In Model 7, we focus on the category of FBA because

waiters could not sell the game option before the installation of the tabletop technology. The additional

variation in the sales in this category conditioned on the number of items sold should then be attributed to

the upselling action (i.e., selling more expensive items).

Table 12 shows the results of cross-selling and upselling actions. Interpreting the coefficients of System

in Columns 1 through 5, the tabletop technology may increase the total number of items sold by 0.3, the

number of food-, beverage- and alcohol-related items by 0.1 (2% increase from the average number of items

sold per check during period I), the number of food items by 0.0582 (1.76% increase), and the number

of alcoholic drink items by 0.0581 (13.83% increase), while it may reduce the number of non-alcoholic

beverages by 0.0136 (1% decrease). These results suggest that the digital presentation of all menu items on

the tabletop system may develop consumers’ appetite to order more menu items. In addition, the ease of

reordering alcoholic drinks on the tabletop device may boost the alcohol sales so significantly that it may

substitute a certain amount of original demand for non-alcoholic beverages. Furthermore, the relatively

small increase in the food items sold and the drop in the beverage items sold suggests that restaurants should

update their systems to allow ordering of food and beverage items directly from the table. Finally, in Column

6, the coefficient of System is 0.0204, which implies that the tabletop technology may increase sales through
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upselling by 2%. For example, as evidenced in the sales break-down, some consumers may be upsold to

switch from non-alcoholic beverages to more expensive alcoholic drinks. The tabletop system may also free

up some waiters’ capacity (e.g., settling the checks), thus allowing the waiters to have more time and energy

to focus on up-selling activities. The 2% sales increase through upselling constitutes 65% of the total sales

lift in the FBA category because the coefficient of System in Model 7, excluding the control ItemQuantity

is 0.031. The stronger contribution from the upselling compared to cross-selling further suggests more

potential cross-selling opportunities if direct tabletop ordering of more of the menu items is allowed or

enabled.

Table 12: Sales and Meal Duration Effects Explained by Upselling and Cross-selling Actions

(1) ItemQuantity

c = All†

(2) ItemQuantity

c = FBA

(3) ItemQuantity

c = F

(4) ItemQuantity

c = B

(5) ItemQuantity

c = A

(6) log(Sales) c =

FBA

System 0.3025*** 0.1027*** 0.0582*** -0.0136* 0.0581*** 0.0204***

(0.0167) (0.0165) (0.0093) (0.0060) (0.0068) (0.0015)

log(MealDuration) 1.0530*** 1.1048*** 0.5965*** -0.0624*** 0.5708*** 0.0855***

(0.0175) (0.0181) (0.0097) (0.0043) (0.0133) (0.0025)

PartySize 1.6060*** 1.5663*** 1.0740*** 0.4524*** 0.0399*** 0.1152***

(0.0068) (0.0066) (0.0036) (0.0027) (0.0024) (0.0012)

ItemQuantity

c=FBA

0.1099***

(0.0007)

Controls Yes Yes Yes Yes Yes Yes

Observations 2,609,692 2,609,692 2,609,692 2,609,692 2,609,692 2,609,692

Adjusted

R-squared

0.465 0.415 0.462 0.180 0.050 0.678

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

†We create five categories, which include 1) food (F), 2) non-alcoholic beverages (B), 3) alcoholic drinks (A), 4) the sum of

the first three categories (i.e., FBA), and 5) the sum of all items (including a tabletop flat-rate game option).

4.4.2 Restaurant-Oriented Impact

One might suspect that the new technology may affect restaurants’ staffing decisions and traffic, which can

simultaneously influence sales and meal duration (Mani et al., 2011; Tan and Netessine, 2014b,a; Chuang

et al., 2016) Hence, it can become unclear whether technology or staffing decisions or traffic are driving

the main results. We explicitly test the management-related performance indicator of staffing levels and

restaurant traffic. In particular, we first specify an hourly model similar to Models 4 and 5 to examine the

32



average effect of the tabletop device on staffing and then another model to analyze the moderating effect of

the restaurants’ initial staffing level. We finally analyze the effect of the tabletop on the store traffic in terms

of the number of checks opened per hour and the moderating effect of the busy hours. That is,

log(HrWaitersrh) = α0 +α1Systemrh +α2 log(HrTablesrh)+α3Controlsrh + εrh,

log(HrWaitersrh) = β0 +β1Systemrh +β2Systemrh×HighStaffingr +β3 log(HrTablesrh)+β4Controlsrh +ξrh, (8)

log(HrTablesrh) = γ0 + γ1Systemrh + γ2Controlsrh + τrh,

log(HrTablesrh) = θ0 +θ1Systemrh +θ2Systemrh×Busyrh +θ3Busyrh +θ4Controlsrh +ωrh (9)

where HrWaitersrh and HrTablesrh are the number of waiters working and the number of checks opened

during hour h at restaurant r, respectively. For the moderating effect in Model 8, we follow Lu et al. (2017),

who study how the effect of a computerized provider order entry system on nursing home staffing decisions

depends on the vertical position of the nursing home, and we define HighStaffingr as a binary variable which

is equal to one if the hourly average staffing level is above the sample median during period I (median = 5)

when no restaurants implemented the tabletop technology, and zero otherwise. In addition to the temporal

and locational fixed effects controls (i.e., Controlsrh), we adjust for the number of checks opened in an hour

because restaurants use this factor to forecast traffic and determine staffing levels. Note that we do not utilize

the individual HighStaffing term in Model 8 because it is time-invariant and absorbed into the restaurants’

fixed effects in Controlsrh. For the moderating effect in Model 9, we create a binary variable Busy, which

is equal to one for all the checks opened between noon and 1pm, and between 6pm and 8pm, and zero

otherwise.

Table 13 shows the results of restaurant-oriented impact. Similar to the results reported in Lu et al.

(2017), the coefficients of System turn out to be statistically insignificant in the two staffing models (0.0063

and 0.0097 in Columns 1 and 2). The interaction term is also insignificant (-0.0095). These results suggest

that the implementation of the tabletop technology did not seem to affect the staffing levels on average or

even depending on pre-installation staffing levels. In other words, the substitution effect of technology may
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cancel out the complementary effect, on average. After talking with the corporate office, we further realized

that managers may have been concerned that the waiters would perceive the new technology as a threat to

replace part of their jobs, which could negatively impact employee morale. Therefore, the restaurants in our

sample elected to stay with their regular staffing levels on average.

The unchanged staffing level may also be attributed to possible stable traffic. The coefficients of System

indeed turn out to be statistically insignificant in the two traffic models (0.003 and 0.0106 in Columns 3

and 4). Its interaction term is also insignificant (-0.032). These results imply that the implementation of

the tabletop technology did not seem to affect the store traffic either, which is against our expectation. The

restaurants seemed to be unable to increase the table turns even though the technology reduced the meal

duration by 10% on average. The reasons are speculative and anecdotal. For example, we noticed that the

waiters were not particularly proactive in clearing the tables. In addition, although customers waited in line

during busy hours, our focal restaurants were not packed all the time. The kitchen capacity may remain

unchanged and become the bottleneck.4 It is also plausible that the hosts were not immediately aware of

when the tables were ready. Ideally, we would need customer waiting time data and kitchen workload data

to understand why the table turns remain constant. We suggest that the restaurants should note that reduced

meal duration does not necessarily translate to more table turns, and they should take advantage of the

reduced meal duration to effectively increase table turns.

To summarize, both the unchanged staffing levels and the store traffic rule out alternative explanations

of our main results and instill more confidence in our quasi-experimental setting of the technology imple-

mentation.

4.5 Further Managerial Consideration

The empirical results of the impact of the tabletop technology afford insights into long-term effects, such

as changes in business processes, organizational structure and innovation in customer and supplier relations

(Brynjolfsson and Hitt, 2003).

4Kitchen staff can tell the hosts to hold, so that they cannot seat more customers.
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Table 13: Restaurant-Oriented Impact

(1)

log(HrWaiters)

(2)

log(HrWaiters)

(3)

log(HrTables)

(4)

log(HrTables)

System 0.0063 0.0097 0.0030 0.0106

(0.0064) (0.0073) (0.0091) (0.0109)

System ×HighStaffing -0.0095

(0.0106)

Busy 0.8827***

(0.0220)

System×Busy -0.0327

(0.0166)

log(HrTables) 0.6061*** 0.6060***

(0.0041) (0.0041)

Controls Yes Yes Yes Yes

Observations 215,532 215,532 215,532 215,532

Adjusted R-squared 0.807 0.807 0.291 0.093

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

First, our results suggest that tabletop technology may increase average sales per check by close to

3%. This sales lift (i.e., the value of the tabletop technology) translates into $6 million per month for a

restaurant chain that generates approximately $200 million in revenues per month. If we use the total effect

of 1%, the sales lift is $2 million. According to reports from our focal chain, the company pays the tabletop

device-maker a subscription fee and receives a portion of the 99 cent flat fee from customers who play

games. We assume the focal chain pays the entire 99 cents≈ 1 dollar as a conservative approximation. In

addition, the flat fee is paid only once for the entire party at the table. Furthermore, one in every 10 parties

of the 20 million customers visiting each month pays to play the games. Assuming an average party size

per check of approximately two people, as in our data, we estimate that technology cost is approximately

(20 million customers /2 customers per party)× 0.1× $1 = $1 million dollars. With the $6 million sales

lift (direct effect) or the $2 million sales increase (total effect), the profit of the technology is estimated to

be $5 million or $1 million. Whether $5 million or $1 million, this additional profitability is substantial for

casual dining companies because of their traditionally low profit margins and ever increasing competition

both within the sector and from the growing fast-casual dining sector. Admittedly, strong competition from

late adopters of tabletop technology may lower the returns of the current technology for our focal restaurant
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in the long run. However, the company’s digital innovation initiative to improve its business process (e.g.,

the company may consider menu recommendation or allows customers to order more food from the tabletop

device) and its experience accumulated from data analytics should enable the company to continue gaining

considerable advantage over its competitors.

Second, the company has left its staffing levels relatively unchanged after implementing the tabletop

technology. In other words, the company seems to incur additional cost to maintain close waiter-customer

relationships. It is true that waiter-customer interaction is an integral part in casual dining service. Waiters

do not simply bring the food to the table, but they also need to make customers feel welcomed, comfort-

able, and look forward to their dining experience (Meyer, 2008). Nevertheless, we recommend that the

restaurant should consider experimenting with staffing levels to fully reap the benefits of the tabletop tech-

nology because reducing staffing levels may not necessarily compromise service quality. According to Tan

and Netessine (2014b), increasing workload (in terms of the number of tables that a waiter simultaneously

handles) to an optimal level may put casual dining waiters “in the zone” to feel motivated to expend more

sales effort (too many tables, of course, may overload waiters and reduce their performance). Indeed, re-

ducing staffing levels may not only increase sales, but also reduce labor costs, adjusting for everything else.

Replicating the econometric approach of Tan and Netessine (2014b) in our focal restaurants, we find that the

optimal workload is about 0.8 tables/waiter above the current sample mean (2.77 tables/waiter) and that the

optimal staffing level is 3.42 waiters per hour (a 23% reduction). Our findings suggest that 77% of the time,

restaurants in our study may be overstaffed by 1.42 waiters. If the restaurants can reduce their staffing levels

to achieve the optimal workload (3.56 tables/waiter) every hour, they may achieve a 3% sales lift, separate

from the tabletop technology’s ability to increase workers’ capacity in serving their customers. We need to

caution that the actual sales lift may be smaller than 3% in practice because sales forecasts may be inaccu-

rate and managers may face various constraints in ensuring optimal staffing levels, such as minimum shift

length requirements (Mani et al., 2011). Furthermore, managers may consider cross-training extra waiters

to learn kitchen responsibilities in order to lift its capacity and allow more customers to be seated. In sum,
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our analysis suggests that restructuring labor staffing decisions has the potential to simultaneously increase

revenues and save labor costs, which is particularly valuable in service industries, like casual dining, which

incur significant labor costs.

5 Conclusion

In this study, we analyze granular POS data from 66 casual full-service restaurants and employ a difference-

in-difference technique to identify the causal impact of the tabletop technology on restaurant performance.

We find that the tabletop system may increase the average sales per check by close to 3% and reduce the

meal duration by approximately 10%. We further estimate that the 3% sales lift per check may translate

into $6 million extra sales or $5 million in profit per month in the short run, which is practically significant

for an industry characterized by a low profit margin. It is worth noting that the tabletop deployment in our

setting is an example of a “soft” technology introduction, in that it did not radically change the existing

business model, thus making our impact estimates conservative. Equally important, the data collected in

the tabletop devices and the company’s digital innovation initiative to improve its business process (e.g., the

company may consider menu recommendation or allows customers to order more food from the tabletop

device) should enable the company to continue increasing value from this technology. Furthermore, our

results suggest that restaurant management should re-evaluate its labor decisions to fully reap the benefits

of tabletop technology because reducing the staffing levels of waiters may not necessarily compromise

service quality. Remaining waiters may be motivated to work harder, and extra waiters may be retrained to

supplement capacity-constrained roles.

Our research has certain limitations, which create exciting opportunities for future researchers to over-

come. First, due to data limitation, we were only able to study the effect of tabletop technology on restaurant

performance within the first year after system implementation. In other words, our research is restricted to

relatively short-term effects, even though we recognize the value of studying a longer-term effect (Camp-

bell and Frei, 2010). Second, our data cannot identify unique customers, and thus it lacks the ability to
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study other important questions such as customer retention rates and customer population dynamics. As the

restaurant chain has just introduced a customer loyalty program, which asks customers to identify them-

selves on the tabletop device to earn and redeem points, the new data should afford excellent opportunities

to understand how to manage the company’s relationships with individual customers. Third, although col-

lecting data from one restaurant chain in one metropolitan area makes business model, geolocational and

macroeconomic trends comparable across the restaurants, it remains interesting to examine the effect of

similar tabletop technology in other settings, such as fine dining and airports. Fourth, we cannot directly

evaluate the effect of tabletop technology on customer satisfaction. Although tips can reflect service quality

and customer satisfaction, we find the ratio between the tips and the check size remains stable. The technol-

ogy may have increased the tips by only 1%, a 0.0018 increase from the current sample mean of 18%. On

the one hand, a self-service technology reduces the human service interaction, which may lower tips. On the

other hand, some customers may be more satisfied with the efficient service which does not require them to

wait for the waiters to settle the check, and tip more. Tipping is also considered a social norm in the United

States, so people may continue using their heuristics of calculating how much to tip. Customer survey stud-

ies are needed to explicitly measure customer satisfaction. Finally, we do not observe the actual browsing

history on the device. By combining browsing history and real-time inventory data, future researchers can

use analytics to recommend menu items or provide real-time promotion to targeted customers.
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Appendix

Outlier Robustness Checks We first use the full sample, which has 2,890,876 observations, without

dropping any data to repeat our main analysis with clustered errors at the store and day level. Then we

drop the observations that are four standard deviations away from the sample means. In particular, we first

exclude the observations whose check size was four standard deviations (16.24 in the original distribution)

above the sample mean (30.45). In doing so, we lose 11,847 observations (0.4%). We do not drop any

observations less than four standard deviation below the sample mean because the check size distribution

is highly skewed to the right. After that, we exclude the observations with party size that is four standard

deviations (1.05 in the original distribution) above the sample mean (1.97), which removes an additional

1,194 observations (0.04%). We do not drop any observations less than four standard deviations below the

sample mean also because the party size distribution is highly skewed to the right. We stop dropping extra

data because after dropping the outliers in terms of check size and party size, the ranges of the rest of the

variables are all within the four standard deviations around their original sample means. In other words, we

essentially remove those outliers of big parties whose check size and meal duration are disproportionately

large. In the end, the trimmed data set has 2,877,835 observations, which retains 99.54% of the full sample

size.

Column 1 through 3 in Table 14 show the main results estimated from the full sample, while Columns

4 through 6 in Table 14 present the main results estimated from the reduced sample. The coefficients of

Systems in the sales models (Columns 1 and 4) are equal to 0.0227 and 0.0226, which are similar to 0.0288,

our main result with top and bottom 5% observations dropped. Similarly, the coefficients of Systems in the

meal duration models (-0.127 and -0.1277) and in the sales productivity models (0.129 and 0.1298) are also

similar to the main results reported (-0.0994 and 0.1077).

Additional Parallel Trends Checks
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Table 14: Check-level Impact of Tabletop Technology on Restaurant Performance

(1)

log(Sales)

(2)

log(MealDuration)

(3)

log(Sales/MealDuration)

(4)

log(Sales)

(5)

log(MealDuration)

(6)

log(Sales/MealDuration)

System 0.0227*** -0.1270*** 0.1290*** 0.0226*** -0.1277*** 0.1298***

(0.0025) (0.0071) (0.0071) (0.0025) (0.0071) (0.0071)

log(Sales) 0.4257*** 0.4282***

(0.0065) (0.0063)

log(MealDuration) 0.1521*** 0.1505***

(0.0020) (0.0020)

PartySize 0.3245*** -0.0253*** 0.2222*** 0.3287*** -0.0243*** 0.2229***

(0.0019) (0.0010) (0.0026) (0.0021) (0.0011) (0.0028)

Controls Yes Yes Yes Yes Yes Yes

H1 Supported Yes Yes Yes Yes Yes Yes

Observations 2,890,876 2,890,876 2,890,876 2,877,835 2,877,835 2,877,835

Adjusted

R-squared

0.562 0.133 0.154 0.556 0.132 0.148

1. Clustered standard errors at store and day level are provided in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

Additional Visual Checks for Another Two Installation Months We conduct additional visual

checks for the installation that happened in December, 2013 (102th week) and Feb, 2014 (111th week),

respectively. Figures 4a and 4b show the average weekly sales and meal duration per check before and

after the 102th week. Two restaurants installed the technology during 102th week (the treated group), while

51 restaurants had not (the control group). Although the two fitted linear trends do not appear completely

parallel, they are not drastically different. More importantly, we estimate the weekly growth rates of the

two groups of restaurants prior to the 102th week, whose sales and meal duration results are presented in

Table 15a. Both the sales and meal duration growth rates are actually statistically indistinguishable, which

supports the parallel trends assumption.

In addition, Figures 4c and 4d show the average weekly sales and meal duration per check before and

after the 111th week. Then another two restaurants installed the technology (the treated group), while 42

restaurants had not (the control group). The two fitted linear trends seem to be quite parallel to each other,

which provides some visual support of the parallel trends assumption. Moreover, we re-estimate the weekly

growth rates of the restaurants prior to the 111th week. Table 15b presents the results. Similar to the 102th

week results, both the sales and meal duration growth rates turn out to be statistically indifferentiable. These
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results further support our parallel trends assumption.

Figure 4: Additional Parallel Trends Checks

(a) Average Weekly Sales Per Check (Installation: 102th Week)
(b) Average Weekly Meal Duration Per Check During Periods I
and II

(c) Average Weekly Sales Per Check (Installation: 111th Week)
(d) Average Weekly Meal Duration Per Check (Installation:
111th Week)

Optimal Full Matching

1. We select four matching variables PreAvgSales, PreAvgMealDuration, PreAvgTables, and PreAvgStaffing

because we a priori postulate that restaurants may consider these factors when deciding where to

implement the tabletop technology first. The technology is directly related to improving sales and

efficiency, which these four variables measure.

2. We then use the four matching variables to estimate both a logit model and a probit model of the
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Table 15: Weekly Growth Rates during Periods I and II

(a) Installation: 102th Week

log(Sales)

Treated

log(Sales)

Control

log(MealDuration)

Treated

log(MealDuration)

Control

WeekTrend 0.0011* 0.0007** 0.0006 0.0001

(0.0000) (0.0002) (0.0006) (0.0001)

PartySize 0.3353* 0.3295*** 0.0526** 0.0528***

(0.0190) (0.0027) (0.0006) (0.0009)

Controls Yes Yes Yes Yes

Observations 29,732 786,338 29,732 786,338

Adjusted R-squared 0.530 0.516 0.093 0.085

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

(b) Installation: 111th Week

log(Sales)

Treated

log(Sales)

Control

log(MealDuration)

Treated

log(MealDuration)

Control

WeekTrend 0.0008 0.0005** 0.0001 0.0001

(0.0002) (0.0002) (0.0001) (0.0001)

PartySize 0.3354** 0.3300*** 0.0546 0.0537***

(0.0026) (0.0025) (0.0050) (0.0008)

Controls Yes Yes Yes Yes

Observations 44,473 1,041,095 44,473 1,041,095

Adjusted R-squared 0.535 0.520 0.055 0.084

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

decision to install the technology in January, 2014. As shown in Table 6, only the coefficient of

PreAvgMealDuration is statistically significant and negative in the probit model. The results suggest

that the treatment restaurants are generally comparable with the control restaurants, which supports

the exogenous installation timing assumption. Nevertheless, those restaurants that tended to have

shorter meal duration may have been more likely to implement the technology in January 2014 than

those that had longer meal duration. We therefore apply matching to reduce such heterogeneity, and

calculate the propensity score as the fitted value from the logit regression.

3. Although many matching methods are available, we use the optimal full matching algorithm 5 because

1) it minimizes the weighted average of the propensity score between each treated restaurant and each

control restaurant in a subclass; 2) it does not have to discard any unmatched observations; 3) full

5We thank an anonymous referee for making this suggestion.
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matching can reduce more bias than other matching techniques, such as nearest neighbor matching.

The optimal full matching algorithm finds seven subclasses, each of which contains one treatment

restaurant. The seven subclasses have 26, 3, 6,2, 2, 4, and 1 control restaurants in them, respectively.

4. After matching, we check the balance to compare the percent reduction in bias achieved with the

nearest neighbor algorithm and the optimal full matching algorithm. As can be seen, the optimal

full matching has higher balance improvement than the nearest neighbor in all matching variables

except PreAvgMealDuration. In addition, the percent balance improvements of PreAvgTables and

PreAvgStaffing are both negative (-308.18 and -1.55) for the nearest neighbor method, suggesting

that the standardized mean differences between the treatment and the control groups actually increase

after matching for these two variables. In other words, the nearest neighbor matching makes the two

groups less similar in these two dimensions. By contrast, the percent balance improvements of all

the variables is positive for the optimal full matching method, suggesting the optimal full matching

algorithm makes two groups more similar in all dimensions. Furthermore, we conduct the omnibus

test for balance of all of the four matching variables simultaneously. The p-value turns out to be 0.136,

which suggests that we fail to reject the null hypothesis that states that these treatment restaurants and

their matched controls are indifferentiable in terms of the four matching variables overall (i.e., the

data are balanced).

Table 16: Percent Balance Improvement in Terms of Standardized Mean Difference

Nearest Neighbor (n = 3) Optimal Full Matching
PreAvgSales 60.31 98.26
PreAvgMealDuration 89.63 78.54
PreAvgTables -308.18 51.19
PreAvgStaffing -1.55 84.79

5. Finally, we repeat our difference-in-difference estimation with an interaction term between System

(treatment) and each of the seven matched subclasses. We do not include the fixed effects of these

matched subclasses because they are absorbed into the restaurant fixed effects. Table 17 shows the
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results. The coefficients of System are all significant and have similar effect size as our main results

(0.0238, -0.11 and 0.1117). These coefficients represent the effects of System on the treated restaurant

in subclass 1, which is the biggest subclass (it has 27 out of 51 restaurants). Some of the interaction

term coefficients are statistically insignificant, which suggests the treatment effects in those subclasses

are indifferentiable from those in the first subclass. The significant interaction term coefficients imply

heterogeneous effect sizes across these subclasses. For example, the coefficient of System×SubClass2

in Column 2 is 0.0156, which suggests that the tabletop technology may reduce the meal duration by

(0.11− 0.0156 ≈)9% in subclass 2. Nevertheless, these subclasses are much smaller than subclass

1. In addition, none of these subclasses have qualitatively different results from our main analysis.

Hence, we conclude that this robustness check after full matching provides congruent results with

those main results without matching.
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Table 17: Check-level Impact of Tabletop Technology on Restaurant Performance on a Matched Sample

(1) log(Sales) (2) log(MealDuration) (3)log(Sales/MealDuration)

System 0.0238*** -0.1100*** 0.1117***

(0.0021) (0.0047) (0.0054)

System×SubClass2 -0.0073 0.0156* -0.0191

(0.0057) (0.0071) (0.0112)

System×SubClass3 -0.0012 -0.0081 0.0057

(0.0037) (0.0107) (0.0128)

System×SubClass4 -0.0138*** 0.0655*** -0.0662***

(0.0022) (0.0033) (0.0045)

System×SubClass5 -0.0207*** 0.0675*** -0.0736***

(0.0025) (0.0044) (0.0053)

System×SubClass6 0.0082 0.0181*** -0.0082

(0.0043) (0.0030) (0.0056)

System×SubClass7 -0.0172*** 0.0200*** -0.0311***

(0.0016) (0.0033) (0.0058)

log(Sales) 0.1895***

(0.0028)

log(MealDuration) 0.1985***

(0.0039)

PartySize 0.3194*** -0.0084*** 0.2760***

(0.0024) (0.0008) (0.0024)

Controls Yes Yes Yes

H1 Supported Yes Yes Yes

Observations 1,332,215 1,332,215 1,332,215

Adjusted R-squared 0.540 0.122 0.325

1. Clustered standard errors are shown in parentheses. 2. *p≤ .05,**p≤ 0.01,***p≤ 0.001

Check-level Analysis Focusing on the Installation Wave between Dec 2013 and Feb 2014 Table

18 shows the results of the robustness check on that wave of introduction between Dec 2013 and Feb 2014.

The coefficient signs and sizes are consistent with the main results. In particular, the technology seems to

increase sales per check by 2%, reduce the meal duration by 8.72% and increase sales per minute by 8.92%.
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Table 18: Check-level Analysis Focusing on December 2013 and February 2014

(1) log(Sales) (2) log(MealDuration) (3) log(Sales/MealDuration)

System 0.0200*** -0.0872*** 0.0892***

(0.0023) (0.0022) (0.0029)

log(Sales) 0.1895***

(0.0012)

log(MealDuration) 0.2016***

(0.0012)

PartySize 0.3193*** -0.0069*** 0.2748***

(0.0004) (0.0005) (0.0005)

Controls Yes Yes Yes

H1 Supported Yes Yes Yes

Observations 673,201 673,201 673,201

Adjusted R-squared 0.545 0.129 0.329

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

Placebo Test Using the To-Go Order Data In addition, Table 19 shows the results of the placebo test

using the to-go order data. As can be seen, the coefficients of System are statistically insignificant, which

supports that our estimates capture the main effects of the tabletop technology.

Table 19: Placebo Test Using the To-Go Order Data

(1) log(Sales) (2) log(MealDuration)

System 0.0013 0.0288

(0.0028) (0.0189)

log(MealDuration) 0.0460***

(0.0024)

log(Sales) 0.2554***

(0.0120)

PartySize 0.3193*** -0.0196***

(0.0004) (0.0043)

Controls Yes Yes

H1 Supported No No

Observations 720711 720711

Adjusted R-squared 0.577 0.031

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

We perform a day-level analysis and week-level analysis with errors correlated at the store level. In

particular, we analyze the effect on the daily (weekly) average sales per check and the daily (weekly) average

meal duration, while controlling for the average party size, and a group of fixed effects of the day of the

week, the weeks, and the stores (i.e., D_Controls). The week-level analysis controls for the fixed effects
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of the weeks and the stores (i.e., W_Controls). Table 20 shows the results. The coefficients of System are

significant and equal to 0.021 and -0.0977. The coefficient sizes are consistent with the check-level and the

hour-level analyses.

Table 20: Day-Level and Week-Level Analyses

(a) Day-Level Analysis

(1) log(DailyAvgSales) (2) log(DailyAvgMealDuration)

System 0.0210*** -0.0977***

(0.0021) (0.0061)

log(DailyAvgSales) 0.2581***

(0.0211)

log(DailyAvgMealDuration) 0.1214***

(0.0131)

DailyAvgPartySize 0.4123*** -0.0080

(0.0098) (0.0094)

log(DailyTables) 0.0107 0.0447***

(0.0055) (0.0064)

D_Controls Yes Yes

Observations 17,813 17,813

Adjusted R-squared 0.870 0.680

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.

(b) Week-Level Analysis

(1) log(WeeklyAvgSales) (2) log(WeeklyAvgMealDuration)

System 0.0117*** -0.0904***

(0.0017) (0.0030)

log(WeeklyAvgSales) 0.1086**

(0.0394)

log(WeeklyAvgMealDuration) 0.0262**

(0.0095)

WeeklyAvgPartySize 0.3837*** 0.0393

(0.0072) (0.0210)

log(WeeklyTables) -0.0050 0.0146

(0.0041) (0.0083)

W_Controls Yes Yes

Observations 2,772 2,772

Adjusted R-squared 0.911 0.840

1. Standard errors are shown in parentheses. 2. *p≤ .05, **p≤ .01, ***p≤ .001.
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